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System Identification Using Frequency Scanning and the
Eigensystem Realization Algorithm

Ralph Quan
Frank J. Seiler Laboratory, U.S. Air Force Academy, Colorado 80840

The application of the eigensystem realization algorithm to flexible structures excited with nonimpulse

r fYI type inputs is described. Sinusoidal pulses are a special subset of such inputs, and a discussion is given
r. on their use to lock on to particular modes. The determination of impulse response functions from N)

nonimpulse response functions is performed via a two step procedure. In the first step, free decay data
is analyzed by the eigensystem realization algorithm to determine the structural frequencies and damping.

"C:3 ammo Forced response data is analyzed in the second step, by solving an overdetermined set of linear equations
- ,": for the modal coefficients of the impulse responses. It is shown that the number of impulse response -

% ~ coefficients is halved if displacement, velocity, and/or acceleration sensors are used in conjunction with)
force actuators. System identification is completed after the eigensystem realization algorithm is used on
the impulse responses to produce a linear state space model of the structure. Numerical examples are
given in which structural models are determined from simulated data corrupted with noise.

Introduction as Observer/Kalman Filter Identification, identifies an observer/
T HE eigensystem realization algorithm (ERA) is a system Kalman filter to determine the impulse response.

identification method that has been studied extensively.' The remainder of this paper describes an alternate method
It determines a linear differential equation model of a structure that does not involve an observer/Kalman filter. Instead, ERA
by analyzing the structural impulse response data. The applica- is first used to determine the frequencies and damping from
tion of an impulse to a structure can be a problem, since it the unforced response. The impulse response can then be found
excites all of the structural modes. A model that is identified from the least squares solution of an overdetermined set of
from this data would be larger than necessary, if the structure linear equations. The impulse responses between each input
were to be operated in a band-limited manner, and output pair are then simultaneously analyzed by ERA to

In practice, one might apply a short pulse to the structure that produce a linear model of the structure.
would approximate an impulse for the low-frequency modes and
would not excite the high-frequency ones. This procedure would
be successful if the magnitude of the pulse were enough to
produce a significant signal at the sensor outputs. If this is not Consider the following model of a flexible structure:
the case, then a more frequency band-limited signal would be
a logical choice of input. For example, several cycles of a Mq -r Q + Kq = Pu
sinusoidal wave at or near one of the resonant frequencies could(1
be applied. A lightly damped structure may not survive extended Yd = Cdq, Y. = CI , y, = Co (
excitation at one of the resonant frequencies; the sinusoidal
pulse should be stopped after sufficient excitation has been
achieved. By conducting a set of experiments involving sinusoi- where the displacement q, the input force u, the displacement
dal pulses of different frequencies, the structural modes within a sensor output yd, the velocity output y,, and the acceler-ation
certainfrequencyrangecanbeobserved. Finiteelementanalysis output y, are dimensioned as: qER", uE R-, ydeR", y,ER",

! 0 and previous system identifications can be used to narrow down y. rR.
the frequency bands of interest. ERA cannot be used to analyze Without loss of generality, we will consider each input-output

r .g this nonimpulse response data; an algorithm is needed to deter- pair separately (m = 1, p = 1). The single output is assumed
tr mine the impulse response from nonimpulse response data. One to be a displacement, a velocity, or an acceleration. The mass

o , . such algorithm was developed in recent work by Horta et al..' matrix M is assumed to be positive definite and symmetric; the
S Phan et al.,' Juang et al.,' and Phan et al.' The algorithm, known damping matrix C and the stiffness matrix K are assumed to
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be positive semidefinite and symmetric. It is assumed that the C, = (0 c'). For an acceleration sensor, C, = (-c.ki' k-
system is modalizable, 'c. ). The system described by Eq. (5) is the diagonalized

version of the system described by Eq. (6). Therefore, the
V + C'o + K'v = i'u transfer functions are equal,

Yd = Cdv, y, = C"1, Y. = C(2) C,,(sl - A)-1B, = CQ(sl - A,)-'B, (7)

The matrices C' and K' are diagonal. For undamped systems
and for systems with Rayleigh damping. modalization can be After some algebra, the Eq. (7) yields conditions for the dis-
performed. This modalizability assumption is not essential for placement and the velocity sensors.
the system identification method described subsequently, but Displacement sensor:
it will be seen that the number of parameters which need to be
determined is ceduced if modalization occurs.

Consider one of the modes and the contribution to the output c, = 0 (8)
from this mode,

Velocity sensor:
V. + coO + k'v, = 13iu

,ci = -ort c, (9)
Yd, =cýv, Ydy =Z. y

i= Acceleration sensor:

"~i1y,-, = 0,v , Y, , ( )lV = = 'ic (10)

Y°' = c'V, a o'.l/i, + t
. C + C' = 2q, + (11).- ' '+ a2c.- civi-ckiv +c.,Pi3u c", $i2

Y. = y where the constants c,, c,., oa,, and ow, were defined in Eq. (4),
i- •and the new constants Ii, and I, are defined as follows:

Since it is possible to perform the transformation vi = P"u and I, = I - [2 '/(cr2 + wj)] (12)
then cancel P8 from the given differential equation, we will IoIa +

assume from this point onward that this has been done by I= [r,,,,l(cr + w,,)1 (13)
setting % equal to I1.

The impulse response from this second-order system is
given by Now consider the discrete time version of the system

described by Eq. (5)

h,,() = ciesi• + cqe= ' + cb() (4) xi(k + 1) = F,,x, (k) + G,,u(k)

yk= a= +jxW.k C di k, + (14)

where the asterisk is the complex conjugate operator; ci and s, y,(k) = H,,x,(k) + ()u(k)(

are the complex modal coefficient and the continuous time0/ \ ( 1
eigenvalue, respectively; and 8(t) is the Dirac delta function. F, = 0 G,,
A first-order state space system that has this impulse response 0 T* r '"

is given by
H,, = (c, c*), (D = c.,

,t) = A,,xf(t) + Bu(t)

yi(t) = Cxf(t) + D,u(t) ri (15)

(5) = ,., + jto,, (16)

Ak,, = (s'*) B.,=(~ mie~i (17)

C,, = (c, c*), D,, = c,. where h is the time step size. If an impulse is applied at k
0 to this discrete time system, then the discrete time impulse

The system described by Eq. (3) can also be placed in a response is equal to the impulse response of the continuous

first-order state space form time system (5) at the sampling points:

Yt(t) = Axix(t) + Bju(t) h,.(k) = cr! + c,*(r,*)k (18)

y,(t) = Cixi(t) + Dju(t) (6) = C., (k = 0) (19)

xt) = (ti)W This is also the form of the unforced response (nonzero initial
conditions and zero input). Therefore, an analysis of the

0(0 unforced response by ERA will correctly determine the discrete
A, = ( ", , B, = , Di = c., time eigenvalues. The eigenvalues of the state space model

produced by ERA are the discrete time eigenvalues r,. By
performing a complex logarithm on Eq. (15). we can obtain

For a displacement sensor, Ci = (cd, 0). For a velocity sensor, the continuous time eigenvalues from the discrete time ones.
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After substituting for ci [Eq. (4)] and r, [Eq. (17)] into the Real Matrix Representation
equation (18) and simplifying, we obtain A state variable transformation can be used to produce a

system representation of Eq. (14), which is composed of realh,,(k) =cq•,yj(k) + ca-ya2(k) (20) matrices

= c., (k 0) x,,(k) Tx ,, (k) (30)

,yjk) = 2m 1 cos(kOj) (21) j1
"ya(k) = -2m! sin(k0) T ) (31)

Using conditions (8), (9), and (10), we can simplify the F,, = -1F,,T (32)
equation (20) for k > 0 if the modal frequency wo, is not equal
to zero, and if I, is not equal to zero.= (33)
Displacement sensor: \-i,, 4r,,)

h,,(k) = c,2[AY,(k)] (22) G,, T'G,, (34)

Velocity sensor: - '1 (35)

h,,(k) = c,, [yl,(k) - ((,/w3 ,) "ya(k)] (23) H;, = H,,T (36)

Acceleration sensor: = (-2ca 2cel) (37)

h,,(k) = ch [(Ij,1j) "yi(k) + ya(k)] (24) Numerical Examples

Single Input-Single Output
The displacement output is equal to the convolution of the The identification of two structural modes is simulated for
impulse response (from all of the modes) with the input force, a displacement sensor. From the discussion in the previous
provided there are zero initial conditions section and the displacement sensor condition (8), the following

is an example of a state space representation for a single input-
yd(k) = h,(k) * u(k) - h (25) single output structure:

h(k) * u(k) - h (26) /0.960 0.282 0 0
F, =• 0 0 0.978 0.2081

[Zh/kJ~uk)h (6)-0.282 0.960 0 0F, 0 0 -0.208 0.978

- ci,[yj2(k) * u(k) - h] (27) /
0(o

where - h indicates multiplication by the time step size. G,•= 0. 2

A system identification experiment may run from k = 0 to 0.002!
k = L. If the number of data points (L) is larger than the number
of modes (n) then Eq. (27) is an overdetermined set of linear H, = (7 0 7 0) b = 0
equations which is to be solved for the coefficients c, (i = 1,
.... n). The QR factorization can be used to accurately obtain As the F, matrix shows, the discrete time eigenvalues are at
a least squares solution to an overdetermined set of linear 0.960 ±- j0.282 and at 0.978 - j0.208. Any function could
equations, as described in Ref. 7. have been applied to the input, but for the purpose of this

The response for a velocity sensor (for zero initial conditions) example a sinusoidal pulse was applied (Fig. 1). The displace-
can be derived similarly and is given by

a- - ~Sin&gi InPW Si*leovuqxt

y,(k) = C Iyj1 (k) - "-ya(k) * u(k) • h (28)

0.6
with ci, (i = 1, .... n) being the coefficients to be solved for.

Likewise, the response for an acceleration sensor (for zero
initial conditions) is given by 0o2

y.(k) = C cn[fii(k) + vi,(k)J * u(k) z h (29) -0.2

-0.4-

After the c,, or Ca coefficients have been determined for each 0.6.
input-output pair, the impulse response for each input-output
pair can be computed for k = 0, ... , L by using Eqs. (22-24)
and summing over all of the modes. The eigensystem realization
algorithm can then be used on all of the impulse responses
simultaneously, to yield a linear state space model of the flexible Disaft Time
structure (see Ref. I for details). Fig. I Input excitation.
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ment output with 5% added noise is shown in Fig. 2. Since the is applied to the first input (Fig. 3), with the second input being
input is zero for k > 50, the eigensystem realization algorithm zero. The displacement outputs with 10% added noise are shown
was applied to the unforced response in Fig. 2 for k > 50 to in Fig. 4. In the second experiment, a sinusoidal pulse is applied
determine the modal damping and frequencies. The impulse to the second input (Fig. 3), with the first input being zero.
response coefficients in Eq. (27) were solved for, and the The displacement outputs with 10% added noise are shown in
resulting modalized state soace system is given by Fig. 5.

0.9 1 0 0 Input to One Actusito
-0.28, u.959 0 0 1

F, 0 0 0.974 0.204 0.8

0 0 -0.204 0.974
0.6-

e e = 0.r 2 m0.2-
0.002_ .0.-

H /0(6.49 0 8.170 0 2 0 -0.4-

00.

The worst error occurs in the comparison b .,,,third ..

elements of the H, matrix and H., matrix; th- is 70 .0.11

0 10 20 30 40 So 60 70 80 90Two Inputs-Two Outputs Dsrt u
As another example, consider the case of two structural DiscretTlmemodes with identical frequencies. The following is a discrete Fig. 3 Input excitation at one actuator.

time system for two displacement sensors and two force actua-
tors: pSResponse 

to Input at FSnst Actuator

0..4

0.54039 0.3-

-0.309 0.951 0F, = 0 0 0.951 0.309 02,
0(0 0 -0.309 0-/.0951]d" i•, 0.2- t

0 02
5X 10-4 2 X 10-3] 0.

-0.2

H (3 (0.3-H, 5 0 7 0t 0 00

-0.7 0 10 2D 30 4 0 60 7 0 80 90

As the F, matrix shows, the repeated discret time eigenvalues Dscete Tune
are at 0.951 t j0.309. In the first experiment, a sinusoidal pulse Fig. 4 Noisy outputs due to sicst actuator.

Single input - Sin&l Output Repos to Input at Second Actuator
0.5 0.4 [:,,:.;:.

0.4- 0.3-

S 0.3- 02

• 41.1

01.1-

.0.2- ~-0.2-".

.o.3 .~0.3-ii
•-0.3 0.

.040 10 20 30 40 so 60 70 9D 0 'o I0 2 30 40 50 60 70 so 90

Dsrt Tune Dts1r,," Tune

Fig. 2 Noisy output. Fig. 5 Noisy outputs due to second actuator.
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Since the input is zero for k > 41, the eigensystem realization response is the sum of the modal displacement impulse
algorithm was applied to the unforced response in Fig. 4 and responses, it is guaranteed to be zero at time zero. The situation
5 for k > 41 to determine the modal damping and frequencies. for velocity or acceleration sensors is somewhat similar, in that
The impulse response coefficients in Eq. (27) were solved for. only one of the two modal coefficients is to be solved for.
With these coefficients, the four impulse response functions In the case where the damping is large and modalizability
between the two inputs and two outputs were computed using does not occur, there is no relationship between the two modal
Eq. (22). The eigensystem realization algorithm was then used coefficients for each mode. The simplifications presented in
on the four impulse response functions to obtain a discrete time the given analysis are not performed in this case, and both
state space model. After a modalizing transformation of that modal coefficients are solved for. It is still possible, however,
state space model, we obtain to constrain the displacement impulse response to be zero at

time zero. Setting the discrete time k to zero in the expression
00 for the displacement impulse response will result in a linear

-0.950 0.308 0 0 equation that constrains the modal coefficients. This equation
F2  -0.08 0.950 0 0 is to be appended to the overdetermined set of linear equations0 0 -0.308 0.950 described in this paper, and the whole set of equations is to be

solved for the modal coefficients. In the case of a velocity

sensor, the impulse response expression contains velocity modal
4.13 X 10-1 4.75 x 10"\ coefficients. Integrating the expression results in a displacement
2.11 x 10-3 1.05 × 10-3 | impulse response, which is constrained to be zero at time zero.

G2 -4.84 x 10-" -5.40 X 10-"| Thus a linear constraint is established between the velocity
5.27 X 10-4 2.11 X 10-3 / modal coefficients; this is appended to the overdetermined set

of equations. A linear constraint is similarly obtained in the

/7.00 -5.50 x 10-1 3.00 -5.35 X 10-8 acceleration sensor case by performing two integrations on the
H2 =5.00 5.26 10- 7.00 4.03 1 10- impulse response expression.

Structural models were considered in this paper; the more
general case of a set of first-order differential equations can be

0( 0 considered as well. In this case, terms of the form cjr, appear
in the discrete time impulse response, where r, is the ith discrete
time eigenvalue and c, is a coefficient. However, terms of the

In comparing the parameters of the first model with the form ckjri' are necessary if Q repeated eigenvzlues occur (0

identified model, we find that the error is less than 6%. S j < Q). The combination of the eigensystem realization
algorithm and a least squares determination of the impulse
response coefficients would also determine a linear state space

Discussion model, for the case of first-order differential equations.
System identification using nonimpulsive inputs has been For multi-input/multi-output systems, the proposed proce-

described in this paper. Band-limited white noise could be dure requires one input excitation at a time and that experiments
used as the nonimpulsive input, but the sinusoidal pulse was be done separately for each input-output pair. Simultaneous use
considered because of its simplicity. An initial frequency range of all inputs can be advantageous in that only one experiment
for the sinusoidal pulse frequency can be determined via finite need be performed for all inputs and outputs. However, one
element analysis and previous system identifications. The fre- experiment provides less data, which would tend to increase
quency range is divided into a grid with the desired frequency the sensitivity of the system identified model to noise. If it
resolution, and a set of system identifications is performed for is critical to perform only one experiment, then the system
each grid point. Any mode that is detected by one of these identification procedure would need to be slightly modified.
system identifications can be identified once more, by setting The impulse response expressions would be expanded to sum
the frequency of the sinusoidal pulse to the identified mode the modal components from each input, and more modal coeffi-
frequency. This causes the sinusoidal pulse to "lock on" to the cients would be simultaneously solved for.
detected mode, thereby maximizing the signal-to-noise ratio A more significant reason for the simultaneous use of all
for that particular mode. The system identified model increases inputs is to increase the excitation of the structure. In the case
by at least one mode whenever a lock-on condition occurs. of many weak actuators distributed over a large structure, the

Passive vibration control is well suited for use with this form use of only one actuator may not produce significant sensor
of modal system identification. Analytical formulas have been signals. An input transformation can be performed where new
derived for passive vibration suppression by an inertial reaction inputs are defined to be linear combinations of the physical
device,' or by piezoelectric actuators.9 After the sinusoidal pulse inputs. Experiments would use only one of the new inputs at
excitation, the modes at or near that frequency can be identified a time, but this would imply the simultaneous use of all of the
via the procedure in this paper. With this identified model, the physical inputs. With the significant sensor signals resulting
analytical formulas can be used to determine a passive vibration from the simultaneous input usage, a model is identified that
controller. This ease of design and the unconditional stability relates the new set of inputs to the sensor outputs. A model
of passive controllers provide a means to suppress the modes relating the physical inputs to the sensor outputs can be obtained
that are excited by a sinusoidal pulse at a particular frequency. by inverting the input transformation.
Rapid suppression is desirable, so that the system identification
can quickly proceed to the next frequency data point.

If modalizability of the second-order structural differential Concluding Remarks
equations can be assumed, the number of impulse response A method has been presented that applies the eigensystem
coefficients to be determined is reduced by one-half. This realization algorithm to flexible structures excited with nonim-
removal of parameters ensures that certain physical constraints pulse type inputs. The simplicity of the method makes it an
are satisfied. For example, a displacement sensor on a flexible interesting alternative to the OKID method. However, it is more
structure with zero initial energy must show zero displacement complex than the determination of the impulse response via the
at time zero, even when a force impulse is applied at time zero. inverse Fourier transform of the frequency response function.
The first modal coefficient ci, is absent in the modal component Both steps of the presented method possess least squares
of the displacement impulse response [Eq. (22)1; the presence characteristics that minimize the sensitivity of the identified
of the sine function in the equation causes the modal displace- model to noise. The inverse Fourier transform method, with its
ment to be zero at time zero. Since the displacement impulse simplicity, does not attempt to minimize noise sensitivity. A
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quantitative comparison of these three methods with respect to Controller Design," Proceedings of the AIAA Guidance, Navigation,
simplicity and noise sensitivity, therefore, seems appropriate and Control Conference (New Orleans, LA), AIAA, Washington, DC,
for future research. 1991, pp. 1172-1179.
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System Identification via an Asymptotically Stable Observer," Pro-

Acknowledgments ceedings of the AIAA Guidance, Navigation, and Control Conference

The author would like to thank the National Research Council (New Orleans, LA), AIAA, Washington, DC, 1991, pp. 1180-1194.
and the Air Force Materiel Command for their support. Addi- 'Juang, J.-N., Phan, M., Horta, L. G., and Longman. R. W., "Identifi-
tional thanks goes to Steven Webb at the U.S. Air Force Acad- cation of Observer/Kalman Filter Markov Parameters: Theory and
emy and to Daniel Stech at the Frank J. Seiler Research Experiments," Proceedings of the AIAA Guidance, Navigation, and

Laboratory for their support. Control Conference (New Orleans, LA), AIAA, Washington, DC, 1991.
"6Phan, M., Horta, L. G., Juang, J.-N., and Longman, R. W..

"Improvement of Observer/Kalman Filter Identification (OKID) by
References Residual Whitening," Proceedings of the AIAA Guidance, Navigation,

SJuang, J. N.. and Pappa, R. S., "An Eigensystem Realization Algo- and Control Conference (Hilton Head, SC), AIAA Washington, DC,
rithm for Modal Parameter Identification and Model Reduction," Jour- 1992.
nal of Guidance and Control, Vol. 8, No. 5, 1985, pp. 620-627. 'Golub, G., and Van Loan, C. F., Matrix Computations, Johns Hop-

2Ho, B. L., and Kalman, R. E., "Effective Construction of Linear kins Univ. Press, Baltimore, MD. 1989.
State Variable Models from Input/Output Data," Proceedings of the 8 Den Hartog, J. P., Mechanical Vibrations, McGraw-Hill, New
3rd Annual Allerton Conference on Circuit and System Theory, 1965, York, 1956.
pp. 449-459; also, Regelungstechnik, Vol. 14, 1966, pp. 545-548. 9 Hagood, N. W., and von Flotow, A., "Damping of Structural Vibra-

'Horta, L. G., Phan, M., Juang, J.-N., Longman R. W., and Sulla, tions with Piezoelectric Materials and Passive Electrical Networks,"
J. L., "Frequency Weighted System Identification and Linear Quadratic Journal of Sound and Vibration, Vol. 146, No. 2, 1991, pp. 243-268.

Acce:!- For

f'.TIS CRA&I
DOiC TAB BJ

Unannoun~ced
Justification

By................. ............. .... ...

By . -...... . ......

Distribution I

Availability Coc;es
Avail a:'! ;or

Dist S.ecial

L A

,iA


